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Abstract

Near Mach one, the aerodynamic nonlinearities become of first order and can no longer be neglected in flutter

calculations. Because the superposition principle also breaks down, aeroelastic modes cannot simply be added in a

linear manner, as done in the U–g and p–k methods of flutter analysis. This paper discusses two nonlinear phenomena

of relevance in transonic flutter analysis and testing: (i) multibranch flutter caused by nonlinear mode interactions, and

(ii) the sudden emergence of a fundamentally different nonlinear flutter mode via a period-tripling bifurcation. In the

first case, the superposition principle is not valid and flutter may not necessarily occur when the first aeroelastic

eigenvalue crosses into the right half-plane. In the second case, the nonlinearities open up a new route to flutter,

whereby the reduced frequency of the critical aeroelastic mode is lowered into the unstable range through the period-

tripling bifurcation, and an entirely new flutter mode is born. Neither behavior can be understood within the theory of

classical linear aeroelasticity.

r 2004 Published by Elsevier Ltd.

1. Introduction

Linear flutter stability concepts have been very successful in ‘‘explaining’’ the observed flutter behavior of aircraft

wings at subsonic Mach numbers, below the transonic region; see, for example, Theodorsen and Garrick (1940),

Garrick (1946), and Bisplinghoff and Ashley (1962). Although nonlinear time-marching flutter calculations in the

transonic region have by now become routine, the interpretation of the calculated stability behaviors continues to rely

on ideas from classical linear aeroelasticity. For example, it is generally assumed that flutter occurs at the lowest speed

at which any one of the aeroelastic eigenvalues crosses into the unstable (right) half-plane. This principle is the

cornerstone of the classical linear U–g and p–k methods of flutter analysis, where individual aeroelastic modes are

traced vs. airspeed or Mach number to determine where flutter first occurs.

The objective of this paper is to show that there appear to be exceptions to this rule, where the superposition principle

for aeroelastic modes breaks down and flutter does not occur when the first aeroelastic eigenvalue crosses into the right

half-plane. This in turn implies that there exist flutter instabilities that cannot be predicted by formulating and solving a

classical linear aeroelastic eigenvalue problem, and that the stability concepts from classical aeroelasticity may need to

be modified.

Recent nonlinear Euler-based calculations (Bendiksen, 2002) reveal that near the transonic dip, the critical aeroelastic

mode is a multibranch mode, because a single-degree-of-freedom (SDOF) torsional flutter instability exists at the bottom
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of the transonic dip. At intermediate mass ratios the SDOF flutter can usually only be observed indirectly,

through its interactions with the primary bending–torsion mode, even in cases where the torsional root is

unstable. In this case the classical principle of critical (minimum) flutter speed appears to be violated, and stability

cannot be determined by considering the stability of the individual linearized aeroelastic modes. The present paper

presents a more detailed exploration of this phenomenon and the apparent breakdown of classical aeroelastic stability

concepts.

At very low mass ratios, linear aerodynamic theories predict that flutter is impossible because the reduced frequency

becomes too high; see, for example, the results and discussion in Ashley’s study (Ashley, 1980) of subtransonic flutter

(e.g. Fig. 10 of that reference). In the transonic region, however, we show that the flutter speed does not approach

infinity at very low mass ratios (below about 5), as predicted by subsonic linear aerodynamics. Instead, the aerodynamic

nonlinearities open up a new route to flutter, by lowering the reduced frequency of the critical aeroelastic mode into the

unstable range through a period-tripling bifurcation. This flutter occurs at a frequency outside the first bending–first

torsion frequency interval, and cannot be understood within a linear flutter analysis framework.
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Nomenclature

a speed of sound; also location of elastic axis

A wing aspect ratio

c 2b=airfoil or wing chord

CL; CM lift and moment coefficients

Cp pressure coefficient

Etot T+U=total energy

g structural (hysteresis) damping

h plunge (bending) displacement at elastic axis (EA), positive down

k ob/UN=reduced frequency

l wing semispan

m mass per unit span

M Mach number

p pressure

q 1
2
r
N

U2
N

¼ dynamic pressure

qi generalized coordinates

t time

T kinetic energy; also absolute temperature
%U UN/boa=reduced velocity

U strain energy

UN freestream velocity at upstream infinity

a local angle of attack

d wing thickness ratio, tmax/c

y wing elastic twist

m m/prb2 = mass ratio

r air density

t nondimensional time=oat

w transonic similarity parameter (aerodynamic)

C transonic similarity parameter for flutter

o circular frequency, rad/s

oh uncoupled bending mode frequency in vacuum

oa uncoupled torsion mode frequency in vacuum

Superscripts and subscripts

F flutter

(B� ) similarity function

N conditions at upstream infinity
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2. Theoretical considerations

2.1. Nonlinear aeroelastic models

If linear aeroelastic stability concepts are inadequate in transonic flow, what are the alternatives? At first glance it

would appear that bifurcation theory provides the natural tools and ideas for analyzing and understanding nonlinear

aeroelastic instabilities. Indeed, there are nonlinear fluid–structure interaction and stability problems where the formal

theory can be of great help in classifying and interpreting the possible instabilities. But these are generally problems

where the essential dynamics can be captured using relatively simple models based on ordinary differential equations

(ODEs). It is then often possible to obtain a highly reduced model, of the generic form

’x ¼ Fðx; kÞ; ð1Þ

where only the essential degrees of freedom are retained. Here x is a suitable nondimensional state vector for the structural

system, in terms of the generalized coordinates qi and velocities ’qi; and k is a set of nondimensional flutter parameters.

Notwithstanding the immense literature on Eq. (1) [see, for example, Guckenheimer and Holmes (1983)], the model is

very restrictive from an aeroelastic perspective, since it assumes that the unsteady aerodynamic forces are expressible as

point functions of the structural state of the system. This basically implies a quasisteady aerodynamic theory, or a

supersonic piston theory, or certain other very special cases, such as internal flows in pipes, for example. Thus, although

Eq. (1) may be suitable for studying quasisteady flutter and divergence problems of wings, panel flutter at high

supersonic Mach numbers, and flutter and divergence of slender pipes carrying a fluid, it does not provide the correct

framework for modelling the unsteady aerodynamics of wings and lifting surfaces.

In the general aeroelastic problem associated with aircraft wings, the function F must be replaced by a functional that

depends not only on the present state of the system but also on the entire time history of the motion, xt:

xtðsÞ ¼ xðt þ sÞ; �Nosp0; ð2Þ

’x ¼ @ðxt; kÞ; ð3Þ

where the nonlinear functional @ has ‘‘memory’’; it remembers past motions through the effect of the shed vorticity

from the trailing edge and from the entropy production at the shocks. This leads to differential–functional equations

with infinite time delays, which are much more difficult to treat, but which provide a much richer and infinite-

dimensional eigenspace of aeroelastic solutions (Hale and Verduyn Lunel, 1993).

Anderson (1993,1995) has argued that for certain aeroelastic system possessing an appropriate ‘‘fading memory

property’’, the qualitative aeroelastic response can be deduced from a set of finite-dimensional ordinary differential

equations of the form of Eq. (1). From our analysis, this would seem equivalent to assuming the existence of an

‘‘equivalent’’ quasisteady aerodynamic operator. Whether this assumption can lead to a satisfactory approximation in

the transonic range is still an open question, because the shock motion amplitudes and phase angles are not well

behaved in the quasisteady limit

k ¼
ob

UN

-0þ: ð4Þ

In transonic flutter problems, we believe that the difference between Eqs. (1) and (3) is of importance. For example, it is

the memory effect in Eq. (3) that is responsible for certain dynamic hysteresis phenomena observed in numerical

simulations and in some of the secondary flutter bifurcations.

Despite its limitations, Eq. (1) provides a starting point for our analysis, in the same way that a quasisteady flutter

analysis can reveal much of the stability behavior of low-frequency, low Mach number flutter. By performing a Taylor

expansion of F about the zero equilibrium position, Eq. (1) can be put in the form

’x ¼ AðkÞx þ f ðx; kÞ; ð5Þ

where A is the Jacobian matrix at x=0 and f is the nonlinear part of F. The linearized system is obtained from Eq. (5)

by neglecting f. The eigenvalues of the linear matrix A depend on the bifurcation parameters k ¼ l1; l2;y; lp

� �T
;

which in turn determines the bifurcation. For a typical section model in inviscid flow, there are three primary

parameters: Mach number M, reduced velocity %U; and mass ratio m. Additionally, there are four typical sections

parameters: a, xa, ra and oh/oa. In most flutter calculations, the section parameters are kept fixed and the three primary

variables M, %U; and m are varied.

For hyperbolic equilibrium points, where none of the eigenvalues of A has a zero real part, the stability of the

solutions near x=0 is determined by the linearized equations (Guckenheimer and Holmes, 1983). The interesting cases

in aeroelastic stability problems involve nonhyperbolic equilibrium points, where one or more of the eigenvalues of A
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has a zero real part and the stability of the bifurcated solutions cannot be determined without considering the nonlinear

terms in the equations.

The Hopf bifurcation is often considered as a prototype bifurcation for modelling flutter. In this bifurcation, a pair of

complex conjugate eigenvalues of the matrix A crosses the imaginary axis with nonzero speed, and the stable zero

equilibrium point bifurcates into a limit cycle. Numerical simulations of aeroelastic systems in the time domain involve

another discretization of the equations, to obtain a space-and-time-discretized aeroelastic model of the form of a

nonlinear map

xnþ1 ¼ Gðxn; kÞ; ð6Þ

where the vector function G provides a numerical recipe for advancing the solution from the nth to the (n+1)th time

step; t n-t n+1=t n+Dt. For explicit time integrations schemes, such as the multistage Runge–Kutta scheme used in this

paper, expressions for the components of G can be written down. In the simultaneous integration of the fluid and

structural equations, the state vector x in the map includes the fluid degrees of freedom, and is therefore very large. In

the classical approach, the structural degrees of freedom are favored and the fluid degrees of freedom are condensed out

during the time-marching procedure.

2.2. Transonic similarity laws

The transonic flutter boundaries are sensitive to wing thickness and angle of attack, and this dependence can be

deduced from the transonic similarity principles and scaling laws presented by Bendiksen (1999). The idea is to consider

a family of ‘‘similar’’ wings of the same airfoil shape, Fig. 1, by scaling the wing profile

Fu;lðx; yÞ ¼ dfu;lðx; yÞ; ð7Þ

where d is a nondimensional thickness (scaling) parameter, fu,l(x, y) represents the rigid (jig) wing shape, and subscripts

u and l denote upper and lower surfaces, respectively. For small angles of attack and small elastic deformations, the

equation for the wing surface is given by

Bðx; y; z; tÞ ¼ z � d fu;lðx; yÞ þ
½wðy; tÞ � xaðy; tÞ	

d

� �
¼ 0: ð8Þ

For unsteady transonic flow, the similarity parameters are

w ¼
1�M2

N

½ðgþ 1ÞM2
N
d	2=3

; Ã ¼ ½ðgþ 1ÞM2
N
d	1=3A;

*a ¼ a=d; w̃ ¼ w=d; t̃ ¼
d2=3t

½ðgþ 1ÞM2
N
	1=3

;

ð9Þ

where g is the ratio of specific heats and A is the aspect ratio of the wing. The similarity rules for the steady aerodynamic

lift and moment coefficients can then be stated in the form

CL ¼
d2=3

½ðgþ 1ÞM2
N
	1=3

C̃Lðw; Ã; *aÞ; ð10Þ
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Fig. 1. Wing coordinate system and surface definition.
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CM ¼
d2=3

½ðgþ 1ÞM2
N
	1=3

C̃M ðw; Ã; *aÞ; ð11Þ

where ‘‘similarity functions’’ C̃L and C̃M are functions of the three similarity parameters w, Ã; and *a: Similar flows have
the same pressure distributions, lift, moment, drag, etc., after they have been rescaled as specified by the similarity rules.

For aeroelastic similarity, the transonic flutter similarity parameter

c ¼
%U2

pm½ðgþ 1ÞM2
N
d	1=3

¼
1
2
r
N

U2
N

1
2

mo2
a

1

½ðgþ 1ÞM2
N
d	1=3



q̂

½ðgþ 1ÞM2
N
d	1=3

ð12Þ

must also be kept fixed, where q̂ is a nondimensional dynamic pressure

q̂ ¼
1
2
r
N

U2
N

1
2

mo2
a

¼
%U2

pm
¼
1

p
U

boa
ffiffiffi
m

p
 !2

: ð13Þ

To keep the reduced frequency k = ob/UN fixed, the reduced airspeed %U ¼ UN=boa must be held constant.

In the inviscid case, there are three primary similarity parameters: w,C, and %U: In viscous flows, the Reynolds number
provides a fourth similarity parameter. In addition, we must include the dynamical similarity parameters for the wing

itself, which in the simplest case of a typical section model consist of the four parameters a, xa, ra, and oh/oa. In

comparing the aeroelastic response, consideration must also be given to the amplitude scaling, as reflected through the

similarity parameters *a and w̃:

2.3. Transonic flutter boundary

In the study by Bendiksen (2002), it was shown that is not possible to get a complete picture of the transonic flutter

behavior of a wing from classical two-parameter plots of the linear flutter speed, or dynamic pressure, vs. Mach

number. For a given aeroelastic model, the flutter boundary may be plotted as a surface in a three-dimensional

parameter space, Fig. 2, where the axes represent the three primary similarity parameters. Using the transonic similarity

parameters w,C, and %U would provide the most general plots, allowing for changes in airfoil thickness and test medium,

but for a given model it is permissible to plot the surface using the classical flutter variables MN, m, and %U; as done in
Fig. 2.
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Fig. 2. Flutter boundary as a surface in a 3-D space of classical similarity parameters, with all other model parameters fixed. The

observed flutter boundaries in wind tunnel tests are represented by curves or paths (a,b,y) on this surface, and may differ from test to

test if the temperature changes.
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From Fig. 2 we see that a 2-D plot of %UF vs. MN (for a fixed mass ratio m0) represents the projection of the actual 3-D
flutter curve ‘‘a’’ or ‘‘b’’ on the plane m=m0, parallel to the ð %UF ;MNÞ coordinate plane. There is a corresponding

projection, for each Mach number, of the 3-D flutter curve onto a plane parallel to the ð %U; mÞ coordinate plane and
passing though the Mach number being considered. Because the actual path traced out on the flutter surface depends

not only on the properties of the aeroelastic model, but also on the properties of the wind tunnel and the test procedure

used, the two-parameter projections on the similarity planes are not unique for a given aeroelastic model. Furthermore,

the nature (location, sharpness, etc.) of the transonic dip depends on the path traced out on the flutter surface, and on

the angle at which the ‘‘transonic valley’’ is entered. This can lead to confusion when attempting to interpret transonic

flutter data based on two-parameter plots.

In theoretical or computational flutter calculations, the mass ratio is usually kept fixed and the flutter boundary is

plotted as %U or %U=
ffiffiffi
m

p
vs. MN. In wind tunnel flutter tests, on the other hand, both the Mach number MN and the

density typically change from point to point, with m often varying over an order of magnitude (or more) in a given test.

The airspeed is fixed by the relation

UN ¼ MNa0
ffiffiffi
y

p
; ð14Þ

where a0 is the speed of sound at SLSD conditions and y=T/T0 is the absolute temperature ratio. If the temperature is

constant, then U and %U will be directly proportional to the freestream Mach number MN. But if the temperature is not

constant during the test (or between different testing days), the slope of U vs. MN will change, which will alter the

reduced frequency and mass ratio at which flutter is encountered, and hence also the flutter boundary %UF or qF vs. MN.

Because the sensitivity to temperature depends on the local slope, @ %UF=@m; different aeroelastic models will generally
show different sensitivity to changes in temperature. Note that the 3-D flutter surface is unaffected by temperature

changes.

It is therefore important to distinguish between flutter boundaries at constant mass ratio (altitude), and boundaries

obtained in a variable-density wind tunnel. As is shown in Fig. 3, the two cases may yield completely different

boundaries in the transonic region, even for the same aeroelastic model. For a detailed discussion of this important

point, see Bendiksen (2002).

In this paper two different typical section aeroelastic models are used in the time-marching calculations, with

parameters as shown in Table 1. The first is an NACA 0006 typical section model studied by Lazarus et al. (1991) and

also by Bendiksen (1997a). The second model is an NACA 0012 airfoil with typical section parameters identical to the

NACA 0012 Benchmark Model tested at the NASA Langley Research Center (Rivera et al., 1992). The time-marching

flutter calculations were made using the direct Eulerian–Lagrangian scheme (Bendiksen, 1991), with a modified typical

section of unit width modelled with eight plate finite elements. A 192� 32 C-mesh was used in the fluid domain. For the

NACA 0012 model, six FEMS and a 144� 24 mesh were used.

3. Multibranch flutter

3.1. Which flutter mode?

Transonic flutter and the transonic dip cannot be fully understood in terms of classical bending–torsion coalescence

flutter, for the simple reason that this is not the correct instability mechanism in the transonic region. In the classical

linear U–g or p–k methods of flutter analysis, where individual aeroelastic modes are traced vs. airspeed or Mach

number, an undue emphasis is placed on the mode frequencies and their tendencies to (or not to) coalesce. The

corresponding changes in the flutter mode are often ignored; in fact, the mode amplitude ratios may not even be

calculated and are seldom if ever plotter in a standard flutter analysis. This is unfortunate, because changes in the flutter

mode (amplitude ratio(s) and phase(s)) are often much better physical indicators of the true nature of the instability

mechanism than are the corresponding changes in the mode frequencies, especially at transonic Mach numbers.

Near and inside the transonic dip, the flutter mode undergoes a rapid change over a relatively narrow Mach number

interval. Recent calculations have revealed that, for sufficiently high mass ratios, multibranch flutter occurs. That is, two

(or more) aeroelastic modes are ‘‘active’’ and competing for attention in the aeroelastic response. From a linear stability

point of view, the aeroelastic response would be expected to be a linear superposition of all aeroelastic modes,X
i

cifqgie
pit; ð15Þ

where {q}i is the (complex) aeroelastic eigenvector corresponding to the eigenvalue pi and the ci are constants that

depend on the initial conditions. In subsonic flutter, the damping levels of the aeroelastic modes differ sufficiently to
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ensure that a well-defined flutter mode quickly emerges. Because the aeroelastic branches diverge exponentially, only

the least stable mode is generally observable in time-marching calculations and in wind tunnel tests. This is illustrated in

Fig. 4, which shows the flutter mode for the NACA 0006 model at Mach 0.86. Note that although the initial conditions

only excite the torsion mode, the bending-branch flutter mode quickly emerges.

But in the transonic case, both the first bending and first torsion branches can be brought to flutter at Mach numbers

near the transonic dip, by adjusting the mass ratio. Fig. 5 shows this type of flutter for the NACA 0006 model. An

essentially SDOF torsional flutter is about to emerge, but must compete for attention with the bending branch. Part (a)

shows that the bending branch is on a limit cycle and the torsion branch is lightly damped, when the mass ratio is 1600

and %U ¼ 5:9: Increasing the mass ratio to 5000 and %U to 8.5 brings the torsion branch to a limit cycle, while the bending

ARTICLE IN PRESS

Table 1

Aeroelastic models

Model a xa r2a oh/oa ma

NACA 0006 �0.20 0.20 0.25 0.20 20

NACA 0012 0.0 0.0 0.25b 0.6462 75

aFor cases where mass ratio is kept constant.
bExcept as noted (Benchmark model nominal r2a ¼ 1:024Þ:

Fig. 4. Bending–torsion flutter mode of NACA 0006 model at Mach 0.86, with m=1800; %U ¼ 9:525; ’að0Þ ¼ 0:02:

Fig. 3. (a) Flutter boundary for NACA 0006 model, corresponding to fixed mass ratio m=20; (b) corresponding boundary if

UN=aNMN and m is decreased until flutter occurs; (c) Theodorsen–Garrick rule for subsonic flutter. ((a and b) from nonlinear Euler-

based calculations).
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branch now displays divergent flutter. But if the initial conditions are changed slightly, the torsion branch is suppressed

and never emerges, Fig. 5(c), even though the mode is (linearly) unstable. The frequencies of the first bending and first

torsion flutter mode branches remain far apart, both before and after flutter has occurred for either branch. Thus, the

flutter mechanism cannot be attributed to classical bending–torsion coalescence flutter. In fact, there is little or no

evidence that changes in the mode frequencies play a significant role in bringing about the flutter in either of the mode

branches. But it would be incorrect to assume that the flutter is not of the coupled bending–torsion type, at least as far

as the bending branch is concerned. Calculations of the energy transfer from the air to the wing indicate that a pure

bending oscillation is stable in subsonic and transonic flows, for all reduced frequencies (Bendiksen, 2001). This is in

agreement with the observations of Ashley (1980) that some pitching motion must occur even in those ‘‘SDOF’’

bending flutter cases reported in the literature.

Another case of multibranch flutter is shown in Fig. 6. Here, both the bending and torsion branches are unstable

from the start. At tD500; after about 80 oscillation periods, the torsion branch appears to bifurcate to a more strongly
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Fig. 5. Multibranch flutter of NACA 0006 model at Mach 0.882. Note sensitivity to initial conditions.
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unstable torsional mode, which subsequently ‘‘quenches’’ the bending branch. This quenching phenomenon has been

observed in several other instances of multibranch flutter, including cases where the flutter branches interact with the

weak divergence branch (Bendiksen, 1997b). It is a nonlinear phenomenon, which violates the superposition principle of

linear aeroelastic modes, and thus also the associated stability concepts of linear aeroelasticity.

3.2. SDOF torsional flutter

Although SDOF bending flutter appears impossible in subsonic and transonic flows, SDOF torsional flutter is

possible, at least from an aerodynamic work standpoint. Euler-based calculations indicate that an SDOF torsional

flutter instability exists near the bottom of the transonic dip, for moderately high mass ratios. This SDOF instability is

very different from the linear subsonic SDOF torsional flutter described in the classical literature (Runyan, 1952), which

requires very low reduced frequencies and a torsional axis forward of the quarter chord.

The SDOF torsional flutter can usually only be observed indirectly, through its interaction with the bending–torsion

flutter mode, as in Fig. 6. Only the least stable aeroelastic mode is generally observable in a wind tunnel test, or in a

time-marching flutter simulation, and in most cases this is the bending–torsion flutter mode. But at sufficiently high

mass ratios, the ‘‘naked’’ SDOF instability near the bottom of transonic dip does emerge; see Fig. 7. Shock–boundary

layer interactions and 3-D effects no doubt influence this instability, but recent wind tunnel test data (Knipfer and

Schewe, 1999) suggest that it can be observed under the right conditions.

3.3. Flutter–divergence interactions

For transonic Mach numbers close to where the peaks of CLa and CMa occur, the typical section wing model tends to

diverge. Because the lift and moment coefficient slopes are singular in the limit d-0 (Bendiksen, 2002), divergence

seems assured, if the aerodynamic center is ahead of the elastic axis. But the divergence is ‘‘weak’’ in the sense that the

new nonlinear equilibrium position is typically at a small elastic twist and is stable.

Although triggered by the ‘‘almost singular’’ lift curve slope, the weak divergence and flutter–divergence interactions

do not occur at the Mach number where the lift curve slope peaks, because the aerodynamic center (AC) moves aft with

increasing Mach number, which decreases the AC–EA offset e. Thus, the peak value of eCLa will occur at a lower Mach

number than the bottom of the transonic dip. For the NACA 0012 model the shift is about 0.05, and weak divergence

and flutter–divergence interactions occur around Mach 0.80. Examples of weak divergence and flutter–divergence

interactions are shown in Fig. 8.

Whenever weak divergence is possible, the classical flutter boundary is ill-defined, because flutter–divergence

interactions occur. In some cases, flutter occurs as a secondary Hopf bifurcation, Fig. 9, and a linear flutter boundary

does not exist in the classical sense. At low mass ratios, the flutter mode that emerges is often of a very low frequency,

outside the bending–torsion frequency band; see Fig. 10.

4. Flutter via period-tripling bifurcations

4.1. Anomalous m-scaling

Near the transonic dip, the flutter boundary scaling with respect to m does not approach the asymptotic
ffiffiffi
m

p
scaling

expected from linear subsonic theories for high values of m. This observation has a number of practical consequences.

The anomalous m-scaling and the SDOF torsional instability are closely related to the ‘‘almost singular’’ (a.s.)

behavior of the lift curve slope, as discussed by Bendiksen (2002). The abnormal scaling could be relevant in wind

tunnel tests, where the mass ratio often varies over a significant range in a single model test.

Fig. 11 shows the dependence of the transonic flutter boundary on mass ratio, m, for the NACA 0012 Benchmark

Model at the bottom of the transonic dip (MN=0.85). At high mass ratios a significant drop in the flutter dynamic

pressure occurs as the SDOF torsional flutter instability emerges, replacing the bending–torsion instability. At very low

mass ratios, a period-tripling bifurcation of the flutter mode is observed, Figs. 12–15. For mass ratios of roughly 400

and above, the ‘‘naked’’ SDOF torsional flutter instability can be observed. As the SDOF torsional flutter emerges, the

reduced airspeed at flutter approaches an asymptotic value close to 1=kc
a; where kc

a is the critical (maximum)

reduced frequency at which SDOF torsional flutter is possible for this model at this Mach number and angle of

attack. Simultaneously, the speed index and the dynamic pressure at flutter continue to drop with increasing m, as
shown in Fig. 11.
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4.2. Period-tripling flutter

As the mass ratio is lowered, the reduced frequency at which flutter occurs increases. Below a mass ratio of roughly

2–5, linear theories predict that flutter should become impossible; i.e., the flutter speed should approach infinity. But in

the transonic region, at least, our calculations show that the flutter speed does not approach infinity at very low mass

ratios; see Fig. 11. Instead, the aerodynamic nonlinearities open up a new route to flutter, whereby the reduced

frequency of the critical aeroelastic mode is lowered into the unstable range through a period-tripling bifurcation. This

flutter occurs at a frequency outside the first bending–first torsion frequency interval, and cannot be understood within

a linear flutter analysis framework.
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Fig. 7. SDOF torsional flutter near the bottom of the primary transonic dip of the NACA 0012 model (MN=0.85; m=2000; %U ¼ 4:5;
g=0.0024).

Fig. 6. Emergence of SDOF torsional flutter near the transonic dip, resulting in multibranch flutter where both bending and torsion

branches are unstable, but remain far apart in frequency (NACA 0006 model at Mach 0.882; m=1600; %U ¼ 9:768).
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Fig. 8. Examples of weak divergence and flutter–divergence interactions in transonic flow. Note sensitivity to initial conditions

(NACA 0012 model; MN=0.80; m=25; %U ¼ 2:5; g=0.0024).

Fig. 9. Weak divergence can trigger flutter via a secondary Hopf bifurcation (NACA 0012 model; MN=0.80; m=50; %U ¼ 3:05;
g=0.0024).
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Fig. 10. Flutter–divergence interactions triggering low-frequency flutter at low mass ratio. The flutter frequency is roughly 0.178 of the

initial bending-branch frequency before flutter occurs (NACA 0012 model; MN=0.82; m= 5; %U ¼ 1:5918; g=0.0024).

Fig. 11. Flutter boundary vs. mass ratio for the NACA 0012 Benchmark model at MN=0.85.

Fig. 12. Frequency and damping of aeroelastic modes when period tripling occurs for the NACA 0012 model at Mach 0.85 and m=5

(g=0.0024).
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Fig. 12 shows the frequency and damping of the bending and torsion aeroelastic branches as a function of reduced

airspeed %U; where pR is the real part of p in the temporal growth e pt of the aeroelastic mode. Fig. 13 shows the

emergence of period-tripling flutter, and demonstrates that the period-tripling bifurcation occurs before the flutter

boundary is reached (see crosshatched region in Fig. 12). At still lower values for %U; before a coherent 3T flutter mode

can be observed, the critical aeroelastic mode appears quasiperiodic. Fig. 14 shows that the tripled flutter mode persists

to large flutter amplitudes at low mass ratios, but becomes unstable as the mass ratio is increased to m=6 and reverts

back to a higher-frequency mode with a quasiperiodic appearance. For mX7 no period-tripling flutter was observed, at

least not for the NACA 0012 model and the Mach numbers checked, although in some cases the flutter mode appeared

quasiperiodic.

Fig. 15 shows the bending–torsion phase plots of the critical aeroelastic mode (bending branch) corresponding to

Figs. 12 and 13, before period tripling occurs ( %U ¼ 1:55), after period tripling but before flutter ( %U ¼ 1:60), and slightly

ARTICLE IN PRESS

Fig. 13. Period-tripling flutter. Top figure shows stable decay without period tripling. Middle figure shows that the period-tripling

bifurcation occurs before the flutter boundary is reached. Flutter occurs at a frequency outside the oa�oh interval, and can neither be

predicted nor understood within a linear flutter analysis framework (NACA 0012 model at MN=0.85; ’að0Þ ¼ 0:03; g=0.0024).
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beyond the flutter boundary ( %U ¼ 1:65). The flutter boundary is at %U ¼ 1:62; see Fig. 12. A close examination of these

plots and Figs. 13 and 14 (and numerous others not shown) indicates that the period tripling occurs as follows: (1)

adjacent sets of three half-periods are shifted ‘‘up’’ and ‘‘down’’, respectively, in a quasirepetitive temporal pattern; and

(2) the middle full period in the 3
2
sequence is gradually removed by ‘‘rectification’’ (flattening), until the period-tripled

mode emerges with a well-defined shape and frequency. The final flutter mode is close to but not exactly one-third of the

ARTICLE IN PRESS

Fig. 14. Illustrating the ‘‘stability’’ of the flutter mode in the post-tripling region at low mass ratios (top figure), even at large flutter

amplitudes. At m=6 (bottom figure) a modal instability causes a frequency tripling back to the original quasiperiodic (?) flutter mode

(NACA 0012 model at Mach 0.85; g=0.0024).

Fig 15. Phase plots of the critical aeroelastic mode immediately before and after period-tripling bifurcation (NACA 0012 model at

Mach 0.85; m=5; g = 0.0024).

O.O. Bendiksen / Journal of Fluids and Structures 19 (2004) 591–606604



frequency of the parent aeroelastic mode, because of nonlinear effects. In the example shown in Fig. 12, the parent

mode is the bending–torsion mode associated with the bending branch.

At the present one can only speculate on why a period tripling and not a period-doubling bifurcation occurs. Both

would accomplish the natural task of destabilizing the critical mode sufficiently to cause flutter. But despite a systematic

search for period-doubling flutter, none has been found so far. In the period-tripling case, the reduced frequency is

decreased from about 0.49 to 0.19, and at the same time the angle by which torsion lags bending increases from close to

zero to about 120�.

In addition to period-tripling flutter, several instances of complex flutter modes were encountered. One such example

is shown in Fig. 16. At Mach 0.85 and m ¼ 6; the NACA 0012 model flutter mode near the linear flutter boundary

ð %UE1:76Þ is not a classical mode, nor does period tripling occur. Instead, the mode appears to be either quasiperiodic or
possibly almost periodic in the mathematical sense of Bohr (1947). The corresponding phase plots in Fig. 16 reveal a

dense set of trajectories that suggests either chaotic or almost-periodic motion.

5. Conclusions

The main conclusions can be summarized as follows:

(i) Transonic flutter should not be considered ‘‘classical’’ bending–torsion flutter, because flutter near the transonic

dip is often triggered by nonlinear interactions between modes. These interactions cannot be understood within the

framework of linear coalescence flutter.

(ii) At high mass ratios, more than one flutter mode (branch) may become active at the same Mach number. This

multibranch flutter is not simply a superposition of linear aeroelastic modes, because the superposition principle breaks

down and flutter may not necessarily occur when the first aeroelastic eigenvalue crosses into the right half-plane.

(iii) In the transonic region, the flutter speed does not approach infinity at very low mass ratios, as predicted by

subsonic linear aerodynamics. Instead, aerodynamic nonlinearities open up a new route to flutter, by lowering the
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Fig. 16. Almost-periodic (?) or quasiperiodic (?) flutter of NACA 0012 model at Mach 0.85 and m=6: (a) at %U ¼ 1:75 (slightly below
flutter boundary); (b) at %U ¼ 1:77 (slightly above flutter boundary); and (c and d) corresponding phase plots.
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reduced frequency of the critical aeroelastic mode into the unstable range through a period-tripling bifurcation.

This flutter occurs at a frequency outside the first bending–first torsion frequency interval and cannot be predicted

by a linear flutter analysis.

(iv) At high mass ratios and Mach numbers near the bottom of the transonic dip, the dynamic pressure drops rapidly

as an SDOF torsional flutter emerges. At intermediate mass ratios the SDOF flutter can only be observed

indirectly, through its interactions with the bending–torsion mode.
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